Idaho State University – Department of Physics PHYS 499 / PHYS 630 Accelerator Physics — Spring 2009

Homework 3 (due Feb 4)

1. Consider the simple model of a linac for particles of mass m and charge q. The hollow cylindrical electrodes have lengths L_1 , L_2 , L_3 etc. and are separated by thin gaps of negligible width. The potential difference across the gap between two consecutive electrodes is represented by a square wave of period T, frequency f = 1/T, peak-to-peak amplitude 2V, and zero average value. The voltage between electrodes 3 and 2 is 180° out of phase with respect to the voltage between electrodes 2 and 1, and so on.

The particles have initial kinetic energy K_0 , $K_1 = K_0 + qV$ inside electrode 1, $K_2 = K_0 + 2qV$ inside electrode 2, and so on.

- (a) Under the conditions of resonant acceleration, find the length L_n of the *n*th electrode as a function of K_0 , V, f, and the properties of the particle, m and q.
- (b) Choose reasonable values for L, K_0 and V and estimate the operating frequency f for a Na⁺ ion linac and for an electron linac.
- 2. A proton cyclotron has radius R = 50 cm and magnetic field B = 1.5 T.
 - (a) Calculate the cyclotron frequency.
 - (b) Find the maximum kinetic energy.
 - (c) Comment on whether relativistic effects are important for this machine.